The external visual inspections of rolling stock's underfloor equipment are currently being performed via human visual inspection. In this study, we attempt to partly automate visual inspection by investigating anomaly inspection algorithms that use image processing technology. As the railroad maintenance studies tend to have little anomaly data, unsupervised learning methods are usually preferred for anomaly detection; however, training cost and accuracy is still a challenge. Additionally, a researcher created anomalous images from normal images by adding noise, etc., but the anomalous targeted in this study is the rotation of piping cocks that was difficult to create using noise. Therefore, in this study, we propose a new method that uses style conversion via generative adversarial networks on three-dimensional computer graphics and imitates anomaly images to apply anomaly detection based on supervised learning. The geometry-consistent style conversion model was used to convert the image, and because of this the color and texture of the image were successfully made to imitate the real image while maintaining the anomalous shape. Using the generated anomaly images as supervised data, the anomaly detection model can be easily trained without complex adjustments and successfully detects anomalies.
translated by 谷歌翻译
尽管在利用深度学习来自动化胸部X光片解释和疾病诊断任务方面取得了进展,但顺序胸部X射线(CXR)之间的变化受到了有限的关注。监测通过胸部成像可视化的病理的进展在解剖运动估计和图像注册中构成了几个挑战,即在空间上对齐这两个图像并在变化检测中对时间动力学进行建模。在这项工作中,我们提出了Chexrelnet,这是一种可以跟踪两个CXR之间纵向病理关系的神经模型。Chexrelnet结合了局部和全球视觉特征,利用图像间和图像内的解剖信息,并学习解剖区域属性之间的依赖性,以准确预测一对CXR的疾病变化。与基准相比,胸部成像组数据集的实验结果显示下游性能提高。代码可从https://github.com/plan-lab/chexrelnet获得
translated by 谷歌翻译